MA2264 NUMERICAL METHODS IMPORTANT QUESTION FOR APRIL/MAY 2013 ANNA UNIVERSITY EXAM


1. SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS                                        
  1. Solution of equation
                Fixed point iteration: x=g(x) method - Newton’s method
  1. Solution of linear system
                Gaussian elimination
                Gauss-Jordon method
                Iterative method
                Gauss-Seidel method
  1. Inverse of a matrix by  Gauss Jordon method 
  2. Eigen value of a matrix
                Power method
                Jacobi method
2.         INTERPOLATION AND APPROXIMATION                                                        
  1. Lagrangian Polynomials
  1. Divided differences
  2. Interpolating with a cubic spline
  1. Newton’s forward and backward difference formulas.
3.         NUMERICAL DIFFERENTIATION AND INTEGRATION                                                
  1. Differentiation using interpolation formulae
  2. Numerical integration by trapezoidal and Simpson’s 1/3 and 3/8 rules
  3. Romberg’s method
  4. Two and Three point Gaussian quadrature formulae
  5. Double integrals using trapezoidal and Simpsons’s rules.  
  1. INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS          
  1. Single step methods
  1. Taylor series method
  2. Euler  method for first order equation  
  3. Fourth order Runge – Kutta method for solving first and second order equations  
  1. Multistep methods:
  1. Milne’s and Adam’s predictor and corrector methods.
5.         BOUNDARY VALUE PROBLEMS IN ordinary AND PARTIAL   DIFFERENTIAL
  1. wave equation
  2. Laplace quations.
  3. Poisson equations.